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Abstract

Non-coding variants, genome regions that are not translated into proteins, are a major cause
of genetic diseases, such as Mendelian disorders. The functional effects of these mutations
remain difficult to fully comprehend. However, thanks to advances in sequencing technologies
— which have greatly enriched biological data banks — and the development of sufficiently
powerful hardware, it has become possible to design neural network-based tools capable of
analyzing genomic sequences and providing valuable insights into the functional effects of these
specific DNA regions.

This thesis aims to introduce molecular biology concepts and provide mathematical tools
for understanding neural networks. Specifically, it will explore the structure and functioning of
convolutional neural networks with the goal of analyzing three tools based on this technology.
The thesis will focus on DeepSEA, Basset, and DeepSATA — three tools designed to enhance

the understanding of the functional impact of non-coding variants.
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Introduction

To date, the advancement of genomics—a branch of molecular biology that studies the
genome of living organisms—has proven to be highly significant in deepening our understand-
ing of diseases related to genome mutations in individuals. It is estimated that only between 1%
and 2% of DNA contains genes, which are specific regions holding all the necessary informa-
tion for the synthesis of amino acids that will eventually form proteins [1], [2]. Nevertheless, the
vast majority of genomic disorders are caused by mutations in non-coding regions [3], known
as non-coding variants. Mutations in these regions of the genome, which seemingly play a
marginal role, are responsible for the development of significant disorders such as Mendelian
diseases!, epilepsy, cardiovascular diseases, and particularly cancers—including colorectal can-
cer and breast cancer [3]-[11]. It is therefore crucial to continue studying the effects that non-
coding variants in genomic sequences have on individuals.

In recent decades, advancements in sequencing techniques [12] have significantly boosted
the development of bioinformatics—a discipline that combines computer science and biology.
Bioinformatics focuses on organizing biological data to facilitate access and the inclusion of
new information (such as PDB [13]), developing tools that enable data analysis, and ultimately
providing meaningful interpretation of the obtained results [14]. More recently, the growing
availability of biological data and the constant increase in computational power have made it
possible to apply deep learning (DL) techniques in the field of bioinformatics. This remarkable
progress allows for the discovery and refinement of computational solutions that increasingly
accurately define the role of mutations in non-coding regions of DNA. Thanks to these new
technologies, functional genomics—a branch of genomics focused on describing the relation-
ships between components of a biological system, such as genes and proteins [15]—has seen
significant advancements in studying non-coding variants. However, there remain significant
gaps in understanding the relationship between genetic mutations and gene expression. The use

of deep learning techniques is therefore crucial to continuing research in this area. The goal of

'Mendelian diseases, caused by the mutation of a single gene, include cystic fibrosis and Huntington’s disease.



this thesis is to discuss and compare three tools that use convolutional neural networks to pre-
dict the effect of non-coding variants in genomic sequences: DeepSEA [16], Basset[17], and
DeepSATA [18].

More specifically, Chapter2 will introduce the basics of molecular biology necessary to
fully understand the importance of non-coding variants. Subsequently, Chapter 3 will delve
into the fundamental principles of neural networks and how convolutional networks can be
used as an excellent tool to predict the effect of genomic sequences. Chapter4, instead, will
examine the implementation details of each of the three tools, focusing primarily on aspects
related to sequence encoding, network architecture, and the dataset used to train the model.
Finally, Chapter 5 will summarize the differences analyzed in the previous chapter, providing

an overall view of the comparison among the three tools.



Biological Background

The cell is the fundamental unit of life. It is a small aqueous mixture with chemical compo-
nents, enclosed within a membrane, and possesses the remarkable ability to replicate. The pri-
mary characteristic that distinguishes cells is the presence of a nucleus. Cells without a nucleus
are called prokaryotes—these are the most widespread and make up unicellular organisms such
as bacteria and archaea. In contrast, cells that contain a nucleus are called eukaryotes—they are
generally larger and more complex, forming multicellular life forms such as animals, plants,
and fungi [19].

Inside the eukaryotic cell (Figure 2.1), various organelles are present within the cytoplasm,
each carrying out a specific function. The mitochondria are the most widespread organelles.

Their role is to generate chemical energy for the cell: through the oxidation of sugars and fats,
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Figure 2.1: Schematic representation of the eukaryotic cell. The main organelles, including
mitochondria, lysosomes, peroxisomes, the endoplasmic reticulum, and the nucleus, can be
observed [2].



a substance is created that is used in most cellular activities!; this process is also known as cel-
lular respiration because it consumes oxygen and releases carbon dioxide. In addition to being
the primary energy source for the cell, mitochondria also play important roles in metabolism
regulation, the cell cycle, antiviral responses, and even cell death [19]-[21].

The endoplasmic reticulum, on the other hand, is a very extensive organelle with multiple
functions. Among these functions are protein translocation and protein folding [19], [22]. The
lysosomes are responsible for degrading and recycling cellular waste and play a fundamental
role in cellular homeostasis?, development, and aging [23]-[25]. Finally, the peroxisomes are
small vesicles that provide a protected environment to manage toxic molecules such as fatty
acids, which are broken down through (3-oxidation [19], [26].

The most important organelle in the cell remains the nucleus. Enclosed within the nuclear
envelope, this organelle contains all the genetic information in the form of a long molecule of
deoxyribonucleic acid (commonly known as DNA), which, once packaged, forms the chromo-
some [2], [19]. The DNA molecule is a double-helix structure made up of nucleotides. As
shown in Figure 2.2, nucleotides consist of three fundamental elements: a nitrogenous base, a
sugar, and a phosphate group?. There are four nitrogenous bases — Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T) — which pair with each other through hydrogen bonds follow-
ing a specific pattern: Adenine pairs only with Thymine (forming the AT bond), while Cytosine
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Figure 2.2: Schematic representation of DNA. The nitrogenous base pairs can be observed,
bound together through sugars and phosphate groups [27].

This substance is called adenosine triphosphate or ATP, and it has a structure similar to that of a nucleotide:
it is composed of adenine, a sugar, and three phosphate groups.

2Cellular homeostasis refers to the set of mechanisms necessary to maintain the cell’s functions at an optimal
level.

3Phosphate groups have a negative charge and give the molecule its acidic properties.



CHAPTER 2. BIOLOGICAL BACKGROUND

pairs only with Guanine (creating the CG pair) [1], [28]. Furthermore, it is observed that the
nucleotide of one pair and the next one are always linked in the same way through sugar and
phosphate groups: the phosphate group of one nucleotide always binds to the sugar of the next
one. Consequently, when considering a strand of the DNA double helix, the two ends are not
identical, as one ends with a phosphate group (the 5’ end), and the other ends with a sugar (the
3" end).

Through a series of foldings, a DNA molecule approximately two meters long can coil
itself into a chromosome with a size of less than 2 microns (Figure 2.3). The process of DNA
packaging begins with the DNA double helix wrapping around proteins called histones, forming
nucleosomes. Subsequently, nucleosomes cluster together, forming a fiber known as chromatin,

which further compacts upon itself to create the chromosome [29], [30].

CENTRAL DOGMA

The relevance of DNA lies in the essential information it contains. This information re-
sides in genes, which are genomic sequences that encode one or more functional biological
products [32].Gene expression is the process that allows the data within the gene to be used for
the creation of macromolecules, such as proteins. For example, skin cells exposed to intense
sunlight may express genes that regulate skin pigmentation [33]. Gene expression is divided
into two main phases: transcription — which is responsible for producing RNA molecules that
reflect the gene to be expressed — and translation — which translates the information in the
RNA by synthesizing the protein.

In the first phase of gene expression, DNA must be transcribed into a very similar molecule,
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Figure 2.3: The process of DNA packaging that enables the compacting of the double-helix
structure into a chromosome [31].



2.1. CENTRAL DOGMA

namely RNA — also called ribonucleic acid. This molecule differs from deoxyribonucleic acid
by one nitrogenous base — instead of Thymine, Uracil (U) is present — and by the sugar
— changing from deoxyribose to ribose [34]. Transcription of DNA into RNA begins when
proteins, called transcription factors (TF), attracted to the enhancers of the DNA, recognize the
region that marks the start of the gene molecule to be expressed, called the promoter. After
recognizing the start of the sequence, these proteins allow an enzyme called RNA polymerase
to attach and open the double helix of the DNA [35]. Once the double helix is opened, the actual
transcription into RNA begins: the DNA strand is used as a template for the creation of the RNA;
specifically, the nucleotide of the RNA will be complementary to that of the DNA (therefore,
A—U,C—G,G— C,and T — A). In this way, ribonucleic acid is created one nucleotide at a
time by analyzing the DNA nucleotide [34]. Transcription ends when the enzymes and proteins
encounter the terminator region of the gene, which causes the separation from the strand and
the termination of the messenger RNA (mRNA) that contains the information from the gene to
be expressed. The entire transcription process is illustrated in Figure 2.4.

Before leaving the nucleus, the messenger RNA undergoes a series of modifications neces-
sary to ensure the stored information is secure: several diseases emerge from mutations in the
mRNA, including myotonic dystrophy*[37]. The first modification is called 5’-end capping,
which adds a Guanine to the 5’ end of the mRNA via an unusual linkage, ensuring greater sta-
bility of the molecule. Secondly, splicing occurs, removing the non-coding regions — called
introns — from the transcribed gene, keeping only those that will be used to synthesize proteins

— the exons — thus facilitating the translation process. Finally, with the 3’-end processing, a
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Figure 2.4: The process of DNA transcription of the gene into RNA by RNA polymerase [36].

“Myotonic dystrophies are diseases primarily affecting the musculoskeletal system.



CHAPTER 2. BIOLOGICAL BACKGROUND

tail of Adenine — known as the polyA tail — is added to the 3’ end of the mRNA, which, in a
manner similar to the 5’-end capping, ensures stability of the ribonucleic acid strand [38], [39].

After exiting the nucleus through the pores, the messenger RNA reaches the cytoplasm and
is ready to begin the second phase of gene expression, translation. In this phase, the mRNA is
translated into a polypeptide, which is a sequence of amino acids that form the protein. There are
more than 20 amino acids, so instead of coding for a single nucleotide of the messenger RNA,
three nucleotides are coded at a time: this triplet is called a codon. During translation, ribosomes
play a fundamental role as they are the organelles where translation occurs. Ribosomes are
composed of two subunits, each of which has three sites for transport RNA (tRNA). Of the two
ribosomal subunits, the smaller one binds to the mRNA and the anticodons (specific sequences
of three bases in the tRNA) and ensures that translation occurs successfully. The larger subunit
is responsible for catalyzing the peptide bond between the amino acid carried by the tRNA and
the growing amino acid chain [39]-[41]. In this way, the ribosomes, analyzing codon by codon,
can create the polypeptide chain through the tRNA, as shown in Figure 2.5.

Once the polypeptide sequence is created, the process of protein folding begins. Similar
to how DNA is packed into chromosomes, the sequence of polypeptides initially coils into
structures commonly known as a-helix. These then fold again, leading to the tertiary structure
of the protein, which is the actual three-dimensional protein [43]. Once the protein is created,
the gene has been definitively expressed. This transfer of information from DNA to protein

creation is commonly referred to as the central dogma of molecular biology.

As mentioned at the beginning of the chapter, the cell possesses the remarkable ability to
replicate. Generally, a cell duplicates during the growth and development of the organism, when

it needs to be replaced or regenerated, or during the asexual reproduction of certain microor-
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Figure 2.5: The translation process from messenger RNA to polypeptide through tRNA and
ribosomes [42].



2.1. CENTRAL DOGMA

ganisms [44]. The process of cellular replication, called mitosis, is preceded by interphase, a
fundamental process in which the cell grows in size and the DNA in the chromosomes dupli-
cates, facilitating cellular replication. Mitosis can be divided into four main phases [44]-[47],

which are summarized in Figure 2.6:

1. In prophase, the duplicated chromosomes condense in the nucleus and microtubules begin
to approach the nucleus, called centrosomes; at the same time, the nuclear membrane
starts to disappear;

2. After the microtubules have attached to the chromosomes (an intermediate phase called
prometaphase), the cell enters metaphase, where all the chromosomes align along the
cell’s equatorial line;

3. During anaphase, each pair of chromosomes splits and moves toward the poles of the cell;

4. The final phase of mitosis is telophase, in which the two cells divide; the nuclear mem-
branes of the two cells reform around the separated chromosomes.

For mitosis to be successful, the DNA inside the cell must first be duplicated. The DNA
replication process that precedes mitosis is also known as the S-phase — S-phase. DNA dupli-
cation begins with the identification of the replication origin, a sequence in the DNA that spec-
ifies where the DNA should begin to replicate (there are more than one hundred thousand sites
signaling a replication origin in the DNA of a cell). A initiator protein binds to the origin point,
promoting the attachment of the replisome to the DNA, which consists of an enzyme called he-
licase that splits the two strands of DNA in the 5’ — 3’ direction. At this point, the RNA primer
begins synthesizing the DNA, promoting the attachment of the DNA polymerase to both strands
for DNA duplication. Since the genome is complementary, one strand will have the direction
5" — 3’ (leading strand), while the other strand will be in the opposite direction, 3’ — 5’ (lag-

ging strand). Therefore, in the strand corresponding to the replisome, the polymerase will have
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Figure 2.6: Cellular mitosis. The four phases of mitosis can be observed: prophase, metaphase,
anaphase, and telophase [48].



CHAPTER 2. BIOLOGICAL BACKGROUND

no trouble duplicating, while in the 3’ — 5 strand, the DNA must be duplicated in segments,
known as Okazaki fragments, which are joined together by DNA ligase [49]-[52]. Figure 2.7
summarizes the description of the synthesis phase.

NON-CODING VARIANTS

As described so far, the role of DNA is crucial as it is transmitted from cell to cell dur-
ing replication and then used in gene expression to create proteins. In contrast to the regions
of DNA involved in gene expression, there are regions that are not coded, such as enhancers
and promoters, as well as introns of a gene. The non-coding regions of DNA represent be-
tween 98% and 99% of the entire molecule: it was once thought that these regions had no
real function, and were therefore referred to as junk DNA, or DNA junk. Contrary to what
was previously believed, a mutation in these regions can cause various genetic disorders as
the organization of chromatin, the DNA replication process, and gene expression can be com-
promised. In understanding the association between genomic variants and the disorders they
cause, the Genome-Wide Association Study (GWAS) has played a significant role by analyzing
the genomes of numerous subjects and correlating the presence of a mutation with a disorder.
Among the variants identified by the GWAS, many are non-coding mutations [3], [54], [55].

Some non-coding variants can alter the splicing of a transcribed gene. As mentioned pre-
viously, splicing is the process that allows the removal of non-coding regions of a gene (the
introns) before it is translated into a protein. Splicing is part of the processes that mRNA under-
goes before leaving the nucleus and beginning translation. Within the introns, there are various

sequences that mark the beginning of an exon, including the donor, acceptor, branch points, and
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Figure 2.7: The process of DNA replication during the synthesis phase [53].



2.2. NON-CODING VARIANTS

polypyrimidine stretches. Variations in these regions can lead to the failure to code for an exon
or the retention of an intron: more than 15% of hereditary disorders are caused by these issues.
In addition to introns, other untranslated regions (UTR) of mRNA can also lead to hereditary
disorders. These regions are essential for managing the process that follows transcription: they
help to make the mRNA strand more stable and robust and simplify its localization to initiate
the translation process [4], [8].

Non-coding mutations, in addition to occurring in mRNA, can also occur in the non-coding
regions of DNA (ncDNA), such as promoters, which attract transcription factors (TF). These
proteins are responsible for binding the DNA molecule to RNA polymerase, which unwinds
the double helix and begins transcription of the gene. The variation of these important regions
causes incorrect transcription of the gene, leading to erroneous translation into protein. Varia-
tions in promoters are the cause of Mendelian diseases and some types of cancer. For the same
reason, mutations in other cis-regulatory sequences of DNA — such as enhancers and silencers’
— also lead to hereditary diseases. Among these disorders, in addition to the ones previously
mentioned, are cardiac arrhythmia, restless leg syndrome®, and pancreatic agenesis’ [3], [4],
[6], [8].

In addition to variations in enhancers and promoters of non-coding DNA, mutations can
also cause the expansion of tandem repeats, both in exons and in non-coding regions of DNA.
Tandem repeats are long repetitions of short DNA sequences. The consequences of variations
in coding repeats are well-known (such as Huntington’s disease), in contrast to the effects of
the expansion of non-coding repeats. These mutations are associated with disorders in the
transcription phase of DNA and the trapping of proteins involved during splicing [4].

Mutations in ncDNA can also introduce structural changes in chromatin, the fiber that makes
up chromosomes. In particular, as chromatin packs to form chromosomes (Figure 2.3), it forms
specific regions called TAD (Topologically Associating Domains), which contain groups of
genes that frequently interact with each other. Consequently, even a small structural variation
can lead to imperfect gene expression, caused by incorrect interactions between enhancers and
promoters. It has been observed that the structural variation of TADs, in addition to causing
Mendelian disorders, can lead to various neurological diseases [4], [56]. Besides TADs, other
regions of chromatin play an important role during transcription, such as DNase I hypersensitive
regions® (called DHS, DNase I hypersensitive sites), transcription factor (TF binding sites),
and histone modifications. These regions are part of the more general open chromatin regions
(OCR, Open Chromatin Regions), mutations in which can lead to inaccurate gene expression
and, consequently, genetic disorders [16], [18].

In contrast to mutations in coding DNA, the effects of variations in ncDNA are still poorly

SUnlike enhancers, which stimulate a particular gene transcription, silencers serve to reduce or inhibit the
transcription of a particular gene.

This neurological syndrome causes an unbearable need for the subject to move the lower limbs.

"This disorder causes the absence of pancreatic tissue from birth.

8DNase I is an enzyme that cleaves DNA into smaller fragments. It is often used to identify chromatin regions
that are more accessible to transcription.

10



CHAPTER 2. BIOLOGICAL BACKGROUND

understood. This is due to the difficulty in determining whether a non-coding variant influences
the phenotype — that is, the set of structural and functional characteristics of an individual.
Several bioinformatics tools have been developed to recognize whether a non-coding mutation
has a functional effect, but since such functions also depend on the specific context of the se-
quence, predictions can be imprecise, thus providing unclear information about the phenotypic
effect of the mutation [57], [58].

11






Neural Networks

The first artificial intelligence (Al) model dates back to 1943, when E. McCulloch and W.
Pitts attempted to model a neuron as a simple predefined function. In this model, the neuron
generated an output value if the processed boolean input variables exceeded a predetermined
threshold [59]. A few years later, in 1950, Alan Turing published a paper defining a methodol-
ogy to test the intelligence of a model [60]. This test — also known as the imitation game —
involved evaluating whether a machine could mimic human intelligence, thus setting a goal for
the field of artificial intelligence, a term that was coined for the first time during the Dartmouth
conference in 1956.

Two years later, in 1958, psychologist F. Rosenblatt introduced the perceptron which, unlike
the 1943 model, processed non-boolean inputs and had weights to balance the output [61]. Al-
though the perceptron would form the basis of modern artificial neural networks, in the ten years
following the publication of the paper, the initial expectations were not met. In 1968, a book
was published analyzing the performance of the perceptron and noted its significant limitations,
such as the inability to solve non-linearly separable problems [62]. Following a second paper
in 1973, which highlighted the poor results obtained compared to the high expectations, the
First AI Winter began, during which many government organizations ceased to fund research
in artificial intelligence until the mid-1980s. The Al Winter ended in 1985 with the introduc-
tion of Gradient Descent Optimization, an algorithm that allowed the weights to be updated in
such a way as to minimize the error in a network. A year later, the back-propagation algorithm
was introduced, which was fundamental for the development of neural networks, composed of
multiple layers of neurons, each of which is connected to the next layer [63].

Despite the great progress in the algorithmic part, the hardware was not computationally
adequate to support the computational demands of artificial neural networks. This lack of com-
puting power led to the Second AI Winter, a period in which scientific interest shifted to models
requiring less computational power, such as Support Vector Machines (SVM) introduced in
1963. The Second Al Winter ended in the mid-1990s when hardware advancements were able
to meet the computational requirements of neural network-based models. Constant develop-

ment culminated in the last two decades when the GPU was introduced, which, along with the

13



3.1. BASIC PRINCIPLES AND EVOLUTION

increase in available data, greatly accelerated progress in the field of AI[64], [65].

BASIC PRINCIPLES AND EVOLUTION

Artificial neural networks (ANN), commonly referred to as neural networks (NN), aim to
represent a simplified model of the brain, treated as a structure composed of neurons. Therefore,
it is essential to understand the functioning of the individual artificial neuron before exploring
the structure of a neural network, which is a set of artificial neurons connected to each other

according to specific criteria.

ARTIFICIAL NEURON

Similar to a biological neuron, the artificial neuron (Figure 3.1) receives an arbitrary number
n of input signals, which can be represented by the notation xy,x»,...,x,. These values can be
grouped into the input vector X = [x},x2,...,X,]. To describe the result of all input signals to the
neuron, a function g is introduced, which is typically a simple algebraic sum of the input signals
x;, where i € [1,n|. Each input signal, before being summed, is multiplied by its respective
weight (weight) w;, where i € [1, n], and belongs to the weight vector w = [wy,wa,...,wy|. As
a result, the output signal, denoted as v, will be the sum of the product of the i-th input signal

(x;) and its respective weight w;:

n
v:g(w,x):Zwixi:w-x (3.1

i=1
To activate a neuron, the output signal v must be greater than a chosen threshold, denoted by
b. This translates into subtracting this value from the signal v and checking whether the result

is greater than or less than zero.

n n
ZW,’X,’Zb = Zwixi—bZO
i=1 i=1

Figure 3.1: Schematic representation of the functioning of an artificial neuron. The input signals
x; are multiplied by their respective weights w; and summed together; the result v is processed
by the activation function f(v) which returns the output a.
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The value subtracted from the sum, called the bias, can be incorporated into the algebraic sum. It
is sufficient to introduce an additional component xo = 1 in the input vector x and a component
wo = —b in the weight vector w. In this way, equation 3.1 can be rewritten with the index i
starting from 0, as follows:

n
v=g(W,Xx)= Zwixi:w'x
i=0

The criterion that describes the activation of the artificial neuron is summarized in the activation
function, denoted as @ = f(v). The simplest activation function that describes this criterion is
the step function 1(v), graphically depicted in Figure 3.2:

1 sev>0

0 sev <0

Similarly to the reactions of a biological neuron to external stimuli, an artificial neuron
must also be able to respond in a specific way when receiving certain information. In order for
the neuron to behave correctly in response to specific data, it is essential to train it: thus, it is
necessary to use a training dataset that contains numerous input vectors X, each accompanied
by the correct response that the neuron should provide. When working with numerous input
vectors, the notation X is introduced to indicate the j-th vector x in the dataset. Formally, we
define the dataset & as:

2 ={Xi, n}, X2, 32}, Xy} X ym )}

The dataset' consists of M input vectors — X i (j € [1,M]) — and exactly M responses y;,

which represent the expected behavior of the neuron when the input vector is X;. It is therefore

1(v)

2 1 1 2

Figure 3.2: Graph of the step function 1(v). It can be observed that it equals zero for values
strictly less than zero and one for values greater than or equal to zero.

A dataset defined in this way is used in supervised learning, where both the input vectors and the expected
responses are present in the dataset. In contrast, unsupervised learning — which will not be covered — includes
p p p g
only the input vectors, with the expected responses being unknown.
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3.1. BASIC PRINCIPLES AND EVOLUTION

possible to define the matrix X, which contains exactly M vectors — each in a row — composed
of exactly n components (or features), which are the components associated with the weight
vector w, previously introduced. Associated with the matrix X is the vector y, also of dimension

M, such that the component y; is the expected response for the input vector X;.

X{) Xll e Xf e XD Vi
Xg le e XE o X V2
x— | : 3 : y=|
0 1 i n .
Xj Xj e Xj e Xj Y]
_XA04 X]lll ... X}l"/[ ... XA’ZI_ M |

From this, it follows that the vector X is dimensionally compatible with the weight vector w

since they have exactly the same dimension.
0 1
XJ:[X17XJ77X;Z} W:[WO,Wl,...,Wn]

Therefore, the dataset & can be rewritten using the matrix X and the associated expected re-

sponse vectory.
7 ={X,y}

With an initial dataset, it is possible to define a generic algorithm capable of describing the
learning process of an artificial neuron. As described in Algorithm 1, after initializing the weight
vector w, for each vector X in the dataset &, the signal v and the value of the activation function
a = f(v) are calculated. The idea behind the algorithm is to modify the weight vector w based

on the result of the activation function in relation to the processed signal. In this way, once all

Algoritmo 1 Artificial neuron training
Input: Dataset &

Initialize w with random numbers

j1

while j <M do
Compute v as a function of X; and w
Determine a based on v and y;
Adjust w according to the result a
j<Jj+1

end while

the vectors in the dataset have been processed, it is possible to verify whether the neuron has

learned the desired behavior based on the input vector [64].
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MODELLO PERCETTRONE

One of the artificial neuron models used in neural networks is the perceptron. Given an input
vector X j2 and a weight vector w, the signal v is obtained by the algebraic sum of the products

of each component:
n .
V= g(W,Xj) = ZwiXJ’- =w-X;
i=0

The activation function f(v) of the perceptron is the “sign” function (Figure 3.3) — also called

the bipolar step function — defined as follows.

1 ifv>0
a(v) = sign(v) =sign(w-X;) =
-1 ifv<O0

The most important aspect of the perceptron is the learning rule, which defines the criterion ac-
cording to which the weight vector is updated based on the model’s prediction. If the prediction
a; for the vector X; differs from the expected response y;, then the weight vector is updated as
follows [64], [66].

wi = wi +y; X}

In addition to the perceptron, the sigmoid neuron is introduced, which is very similar to the
perceptron except for the activation function. Instead of the discontinuous “sign” function, the
sigmoid function &(v) is introduced. This function is continuous and returns values between
zero and one (Figure 3.4). The sigmoid function, defined below, eliminates the discontinuities

of the perceptron’s activation function and provides a range of real values rather than a binary

sign(v)

Figure 3.3: Graph of the sign function sign(v). It can be observed that it equals -1 for values
strictly less than zero and 1 for values greater than or equal to zero.

2The input vector is referred to as the j-th row of the input matrix X from the dataset 2.
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4 -2 2 4

Figure 3.4: Graph of the sigmoid function &(v).

result.

1 1

= ld+eV - 1+e—w~Xj

o(v)

This important difference makes the sigmoid neuron more flexible compared to the classic

perceptron and better suited for use in neural networks [66].

GRADIENT DESCENT

The learning rule introduced in the perceptron, despite its simplicity, is often replaced by the
learning rule derived from Gradient Descent (GD, represented in Figure 3.5), an approach aimed
at finding the minimum of a differentiable function, often referred to as the “cost” function.
Given the weight vector w = [wg,wy,...,w,|, during the training of the neuron, the algorithm
seeks to modify this vector by progressively minimizing the error between the value predicted
by the model and the expected result. More precisely, given a cost function C(w) — also called

the loss function — the learning rule for GD is:
w=w-—nVC(w)

Here, 7 is a positive parameter, called the learning rate, used to control the speed at which
the weight vector is updated during the algorithm’s execution. The term VC (w) represents
the gradient of the loss function. The gradient of a multi-dimensional function is a vector that
points in the direction of the steepest increase in the function’s value; consequently, the opposite
direction is followed to reach the function’s minimum (local or global). Figure 3.5 graphically
illustrates how the GD approach attempts to reach this value with each iteration. In this case,
the function is represented in two dimensions, but in general, the loss function is n-dimensional.
This function can be any error function: one of the most common is the function that calculates
the mean of the squared errors (commonly called MSE, Mean Squared Errors). As a practical

example, given the weight vector w, a dataset 2 — defined as previously — and an activation
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function a, the MSE is defined as:

1

M v —a(w, X))’

<

C(w) =
1

The approach adopted by this algorithm, while effective, is not entirely efficient. The com-
putational complexity required is significant: at each iteration of the neuron’s training, it is
necessary to compute the derivative of the loss function, which involves predicting all input
vectors X in the dataset 2 and comparing them to the expected output y;. For medium to
large datasets, this approach is quite inefficient, despite being precise. Additionally, gradient
descent may lead to the weight vector being updated to a local minimum of the error function,
resulting in a sub-optimal solution. Both of these issues can be addressed by a variant of this
algorithm, called Stochastic Gradient Descent (SGD). For each iteration of the training algo-
rithm, a number m < M of input vectors with their respective expected outputs are taken, and
the vector w is updated based on this subset of the dataset, also referred to as a mini-batch.
In this way, the computational complexity is drastically reduced, as computing the derivative
of the loss function for a smaller portion of the dataset requires fewer resources. Additionally,
the randomness of the mini-batch selection can prevent convergence to a local minimum, as it
makes the descent along the error function slightly more unpredictable, reducing the likelihood
of sub-optimal results [66]-[68].

Figure 3.5: Gradient descent in a two-dimensional function. It is observed that the algorithm,
through the gradient of the function, is able to move towards the minimum (local or global) of
the function, similar to a glass marble rolling downbhill.
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NEURAL NETWORK

A neural network is a structure composed of artificial neurons that are organized into layers.
In a multilayer neural network, there is always an input layer and an output layer. The layers
in between are called hidden layers. The neurons in the same layer are never connected to
each other but are only connected to the neurons in the previous and subsequent layers. More
precisely, in a neural network, the neurons in layer ¢ receive signals from the neurons in layer
¢ —1 and, after processing the information, send the processed signal to the neurons in layer
¢+ 1: this type of network is called feedforward because there are no cycles in its structure.

Observing Figure 3.6, a new notation is introduced for neurons within a network. The neuron j

in layer / is defined as NJ@, and its activation function output is denoted as ag-é). The weight w%
represents the weight connecting neuron Ni(g_l) to neuron N](.E), 1.e., the connection between the

neuron at position i in the previous layer £ — 1 and the neuron NJ(.K). Additionally, the biases for

each neuron are made explicit: bgg) indicates the bias associated with the j-th neuron in layer
£. Assuming the use of sigmoid neurons within the NN, the output agz) of neuron Nj@, i.e., the

output of its activation function, can be calculated as follows:
l ) (0—1 L
a§. ) = clvi=o0 (ZW§,3 al( )+b§. ))
1

This formula indicates that the output of the activation function of neuron N](.Z) is given by the
sigmoid calculated over the input to the neuron. The input is the weighted sum of the outputs
of the neurons in the previous layer (¢ — 1), multiplied by their respective weights and added

to the bias of the neuron. This notation can be rewritten in matrix form for greater elegance.

input ) output
layer hidden layers layer

@ o @ @ @ @

Figure 3.6: Multilayer neural network(image adapted from [69]).
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The matrix W) is defined to contain the weights connecting the neurons in layer £ — 1 to those
in layer /. Similarly, the vector b(¥) contains the biases of the neurons in layer /. Finally, the
vector al¥) contains the output values of the activation functions of all neurons in layer £. The

formula can then be rewritten as follows:
a) — o (W(@ 2t~ +b(£>> — (Vw))

This result provides an overview of the output of layer ¢, rather than focusing on a single neuron
NJ(-@. Furthermore, a vector v

function, i.e., the weighted sum of the inputs from layer ¢ — 1.

is introduced, whose value is simply the input to the sigmoid

BACKPROPAGATION

Just as in the case of a single artificial neuron, an ANN also needs to be trained. To train
a neural network, the backpropagation algorithm is used, introduced for the first time in 1986.
Backpropagation, leveraging the principles of GD, adjusts the network’s weights with the goal
of minimizing a cost function C. This involves computing the gradient of C, specifically the

partial derivative of C with respect to the weight of a neuron and its bias:

aC aC

) (0)
8wj7i 8bj

Additionally, the neuron error N](.Z), denoted as & J@, 1s defined as:

This critical value indicates how much the cost function varies in response to a small change
in the input of neuron N](.K). Assuming we are at layer ¢, modifying the vector 8(@, and thus
slightly altering the input vector v(¥), can lead to an overall reduction in the loss function C,
propagating the input changes at layer ¢ to subsequent layers. The backpropagation algorithm

provides a method for calculating the value 6 ]@ and linking it to the partial derivatives.

Backpropagation can be described using four fundamental equations [66]. The first equation
provides a method for calculating the value 6 ](L), which represents the prediction error at the
output layer L. As shown in Equation 3.2, this value is the product of two derivatives. The first

partial derivative indicates the change in the cost function with respect to the output of neuron
N](-L): if the neuron has little influence on the final cost, then 5]@

derivative indicates how much the sigmoid function varies at the point v

is very small. The second

(L)

j .

w_ 9C (W
s = =5 ° (vj ) (3.2)
J
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The second equation describing backpropagation relates 8 to the error at the next layer

T
5(“1), as shown in Equation 3.3. Multiplying the transposed weight matrix <W(”1)) by the

+1)

error &' is intuitively equivalent to measuring the error propagated back to layer ¢. This

result is then multiplied element-wise with ¢’ <v(f)> using the operator “©”, which represents
element-wise multiplication’. This step allows the error to be “propagated backward” through
the activation function, providing the value of 6 ) This equation offers a way to compute the
weights of the previous layer by backpropagating the error through the transposed weights and

the derivative of the activation function.
50 _ {(W(”l))T 5““)] o0 (1) (3.3)

The third equation (3.4) relates the derivative of the loss function with respect to the bias of

a neuron (by) ) to its error 0 J@

d

)
= 5, (3.4)
J

Finally, the fourth equation (3.5) connects the derivative of the cost function with respect

(0)
3]
linked to the derivative of the cost function with respect to the weight e through the output

]
(£=1)

to a neuron’s weight to the error of the neuron. More precisely, the error of neuron Nj(.é) is

value g; of the i-th neuron in the previous layer £ — 1.
aC _
& =a' Vs (3.5)
A

~

After defining the four fundamental equations of the algorithm, we can understand the pseu-
docode of backpropagation, provided in Algorithm?2. It can be observed that this algorithm
calculates the error values of the neurons starting from the output layer and propagates them
backward, eventually computing the gradient of the cost function C.

This fundamental algorithm, by calculating the gradient of the cost function for every itera-
tion—or, in technical terms, epoch—of network training, seeks to minimize the loss function C
by optimizing the weight values. In this way, the artificial neural network learns from the input
data to provide valid predictions for data not present in the dataset. Running such a powerful
algorithm requires significant computational effort: modern neural networks consist of thou-
sands of neurons per layer, requiring the precise optimization of millions of weights. For this
reason, only in the past decade—thanks to the development of advanced hardware—has it been

possible to tackle these computational challenges [64], [66], [70].

3Given two vectors, a = [a1, a3] and b = [by, b,], their element-wise product is a ® b = [a1 by, asb;]
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Algoritmo 2 Backpropagation

Input: set of activation function outputs from the input layer, a(!)

For each ¢ € [2, L], compute v() = WD all=D) 1 p() and al) =¢ (V(€)>

Compute the prediction error st — a(cL) o’ <v(-L )>

Output: gradient of the cost function, provided by % = agz_l) 6}8) and 8819@) = 5]@
Jst J
Valore predetto
p n
True False
P Positive Negative
-]
- D
<3
S &
o | False True

Positive Negative

Figure 3.7: Representation of the confusion matrix.

PERFORMANCE METRICS

Neural networks generally process a specific input and produce an output value, between 0
and 1, indicating the probability that the input belongs to a certain category, called a class. After
training the network, it is essential to evaluate how effective the training has been by analyzing
the model’s performance on a dataset containing data never used during the training phase,
called the testing dataset. Once the network processes the test dataset, predictions on the data
can be categorized into four types. If the model’s prediction is positive, meaning it correctly
identifies an element as belonging to a certain category, and the element truly belongs to it, this
is a true positive, or true positive (TP). Similarly, if an input is recognized as not belonging to a
class and it indeed does not belong, this is a true negative, or true negative (TN). In the other two
cases, the model categorizes the element as belonging to a class when it actually does not—this
results in a false positive (FP)—or the model fails to categorize an element as belonging to a
class when it actually does, resulting in a false negative (FN). The confusion matrix (Figure 3.7)
summarizes this concept.

Since the output layer provides the probability that the given data belongs to a class or
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Figure 3.8: Illustration of a generic ROC curve.

not, it is necessary to set a threshold: if this value is exceeded, the data will be considered as
belonging to the category; otherwise, it will be excluded. To select the optimal threshold, the
ROC (Receiver Operating Characteristics) curve is used, which relates two metrics: the True
Positive Rate (TPR) and the False Positive Rate (FPR). The TPR is the ratio of true positives
(i.e., the values that are classified as positive and are truly positive) to all values that are actually

positive (i.e., the true positives and false negatives):

TP

TPR = ——
TP+FN

A high TPR indicates that the model can correctly identify positive elements, meaning those
belonging to the class under consideration. Conversely, a low TPR suggests that the model fails
to recognize positive instances, thereby increasing the number of false negatives. In contrast
to TPR, there is FPR, defined as the ratio of false positives (i.e., elements that are negative but

classified as positive) to all negative values (i.e., false positives and true negatives):

FP

FPR = ——
FP+TN

This metric indicates how well the model can identify negative classes. A smaller value indi-
cates that the model is more accurate at recognition. Consequently, a high FPR implies that the
model cannot adequately distinguish between negative and positive classes [71].

The ROC curve represents, for different thresholds (ranging from O to 1), the TPR and FPR
values of the model.

As shown in Figure 3.8, three cases are represented. The straight dashed line represents a
random model, meaning one that classifies the data arbitrarily. The blue line represents a generic
model. At the beginning of the curve, it can be observed that the FPR grows more slowly com-

pared to the TPR, indicating that the model successfully identifies many true positives without
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classifying many false positives. In this case, the threshold is very high because an element must
have a high probability of belonging to the class to be classified in the positive category. As the
threshold decreases, both the TPR and FPR of the model increase, as many more elements are
classified into the positive category, even if their true class is negative. The red point represents
the ideal model, which has the maximum TPR value (i.e., 1) and the minimum FPR value (i.e.,
0).

To simplify the interpretation of the ROC curve, the area under the curve is often used,
called AUC, Area Under the Curve — or AUROC, Area Under the ROC Curve. This value
greatly helps to summarize the predictive capabilities of the algorithm into a single number
(Figure 3.9). It has been shown that this value provides more meaningful insights compared
to other metrics, including accuracy® [72]. Additionally, this metric is more convenient for
comparing the performance of two models rather than directly comparing their ROC curves:

for this reason, it is one of the most widely used metrics today for evaluating DL models.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNN) were first introduced in 1998 with the publication
of the paper “Gradient-based learning applied to document recognition” [73], which describes
an artificial network called LeNet-5. The goal was to identify handwritten documents. This
paper laid the foundation for the design of a convolutional network [74].

A convolutional network is a feedforward neural network that contains special layers aimed

— AUC
—— ROC Curve

True Positive Rate (TPR)

0 012 014 016 Oi8 1
False Positive Rate (FPR)

Figure 3.9: Area under the ROC curve. This value is commonly used to compare different
models.

4The accuracy of a model is given by the ratio of the model’s correct predictions (TP and TN) to the entire
dataset.
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at reducing the number of weights in the network. Three fundamental layers characterize a
CNN: the convolution layer, the padding layer, and the ReLU layer. These networks are orga-
nized in such a way as to recognize the spatial characteristics of an image. For this reason, the
input layer is generally represented as a two-dimensional matrix> of pixels: this also facilitates

the understanding of the operations that process the input.

RWAE CONVOLUTIONAL LAYER

In convolutional neural networks, parameters are grouped into two-dimensional units called
filters or kernels. These are matrices, generally square, that are smaller in size compared to
the input. These units enable the convolution operation with the previous layer. As shown in
Figure 3.10, the convolution operation slides the filter K over the matrix M and, at each step,
computes the dot product between the kernel and the values of M selected at that moment.
It is observed that the number of values resulting from this operation is exactly the number of
neurons present in the next layer. This value can be easily calculated by knowing the dimensions
of the initial matrix and the kernel. Given the number of columns in the matrix, i.e., its width
w, and the number of rows, i.e., its height A, then, applying a convolution with an n x n filter,

the dimensions at level ¢+ 1 are:
wl D = O g R = p) —p 1

Observing Figure 3.10, we notice that the matrix M of size 7 X 7 becomes a 5 X 5 matrix when
a convolution is applied with a filter of size 3 x 3. Additionally, it is specified that between one
layer and the next, not just a single convolution operation is performed, but multiple convolu-
tions are carried out, each with a different filter (though of the same size). Consequently, the
result of these operations will be a number of matrices d, which correspond to the number of
filters used to perform the convolution on the previous layer. Applying multiple filters to the

same layer makes it possible to recognize specific patterns: for example, a set of filters can be

oft]1]1]0j0]o]
oOl0|1[1[1|0]|0] 114[3]4]1
0[0|0[1[1]|1]0 1|01 112433
0/0j0]1][1]0[0f = [0[L|0] = [1]2]3]4]I
0l0[1[1]0]|0|0 ~-|1|0|1 113[3]1]1
0[1/1]0]|0[0]0 3(3[1[1]0
1/1]o]o]o]o]o K

MxK

M

Figure 3.10: The convolution operation in a two-dimensional matrix (adapted from [75]).

> Assuming, for simplicity, that the image is in grayscale.
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Figure 3.11: Representation of a convolutional neural network. Note the presence of multiple
convolutional layers that enable the extraction of progressively more complex patterns (adapted
from [69]).

used to identify a shape within an image. In this way, in a CNN, it is possible to have mul-
tiple convolutional layers, each of which recognizes an increasingly complex pattern from the
initial image. Having multiple convolutional layers processing the image ensures that the last
convolutional layer examines larger portions of the image, recognizing more intricate features
and structures [74], [76].

As previously noted, after each convolutional layer, the image size is reduced in proportion
to the filter size. Generally, dimensional reduction leads to information loss and should be
avoided. For this reason, before performing the convolution operation, padding is applied.
Through this operation, a series of “0”® values are added along the edges of the image so that,
once processed, it remains the same size. On each border of the image, exactly (n— 1)/2 pixels
are added, where n is the filter size. Figure 3.12 illustrates the convolution operation presented
in Figure 3.10, with the difference that the initial matrix has undergone the padding operation.
Comparing the two figures, we observe that in the first case, the convolution reduced the original
matrix size, while in the second case, through padding, the size remains unchanged due to the

values added along the matrix borders [74].

RELU LAYER

Generally, each convolutional layer is followed by a ReLLU layer (Rectified Linear Unit).

This layer replaces the sigmoid activation function with a function called the rectifier, defined

The value zero is chosen precisely because it has no effect and does not distort the numerical result of the
convolution.
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Figure 3.12: Padding of a matrix before convolution. This way, the matrix size remains un-
changed after convolution (adapted from [75]).

> | ReLU(x)

Figure 3.13: Graph of the rectifier function ReLU(x).

as follows:

X ifv>0
0 ifv <0

ReLU(x) = max (0, x) =

It is observed that, unlike the convolutional layer, this layer does not change the matrix size as
it directly maps the existing data without altering its structure. The ReLU activation function,
represented in Figure 3.13, has been recently introduced in neural networks as it provides several

advantages over sigmoid functions, particularly in terms of training speed’ [74].

POOLING LAYER

After processing the information through convolution, in order to reduce computational
load, the extracted information is concentrated using pooling. The most common type of pool-

ing in NN is max-pooling. This operation, similar to a filter, moves along the matrix and

"This is because the derivative of a linear function is much simpler than the derivative of the sigmoid function.
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extracts the maximum value from the selected area (Figure 3.14). The idea behind max-pooling
is to retain the most prominent features from the given matrix to reduce information complexity,
making the training phase less computationally expensive. In addition to max-pooling, there is
also avg-pooling, which calculates the average of the pixels in the selected region, extracting
the “average property” instead of the dominant one [74], [77].

Finally, as in all neural networks, CNNs include fully-connected layers. These layers, which
appear only after the convolutional layers (as shown in Figure 3.11), serve the same function as
a classic feedforward NN: performing a series of calculations that allow the network to correctly

predict the output based on the provided input [74], [77].

APPLICATIONS

Although CNNs have so far been described as tools that process only images, their applica-
tions are much broader. Among their numerous applications, some notable ones include Natural
Language Processing (NLP)—a field focused on processing natural language through speech
recognition and text classification—and Computer Vision, which includes visual recognition,
scene labeling, and the detection of objects and human actions [78]-[80].

Beyond these applications, convolutional neural networks are widely used in bioinformat-
ics. More specifically, one-dimensional CNNs® analyze sequences of DNA and RNA, learn-
ing sequential patterns—also called motifs in bioinformatics—that become progressively more
complex through different convolutional layers. This approach enables a deeper understanding

of problems related to gene expression regulatory elements, including non-coding variants [81].

3[7]4]1]6]oO]
219|1|8|5/0/0 919(8|8]|7
0/4/0(6]7[3][0] - - ]9]/9|8[8]8
5/1]{0[2/8|0]0 50919]9]8
0(0|3]|9(0[0]4 71919]9]8
116/7/0(2]0]0 8(9]9]9|4
glojojo|1]0]0

M Mpooled

Figure 3.14: Max-pooling operation in a matrix. This operation allows extracting the dominant
features after convolution (adapted from [75]).

8Where the input extends in one dimension, just like a sequence.
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Convolutional Networks and Non-Coding

Variants

In this chapter, three tools based on convolutional neural networks will be presented, devel-
oped with the goal of improving the functional understanding of non-coding mutations. The
models discussed are DeepSEA [16], Basset [17], and DeepSATA [18]. Each of these models
will be thoroughly analyzed to understand the main characteristics of each tool. More pre-
cisely, the dataset used to train the model, its structure—i.e., the number and type of layers

present—and the applied training techniques will be discussed.

DEEPSEA

The first tool to be analyzed is DeepSEA (Deep learning-based Sequence Analyzer), intro-
duced in 2015 with the goal of predicting the effect of non-coding variants in chromatin. To
ensure accurate prediction, this model considers long DNA sequences to better understand the
context in which the mutation occurs and thus comprehend its functionalities, also thanks to
the hierarchical structure of the convolutional layers, which allow the examination of local and
global patterns.

Furthermore, DeepSEA is capable of learning multiple chromatin functionalities simultane-
ously using a multitask learning approach, which allows training the model on multiple related
tasks at the same time. To gain a deeper understanding of the functional effects of non-coding

mutations, it was trained to predict 919 chromatin profiles divided into three macro categories:

* 690 types of sequences associated with transcription factor (TF) binding sites, which play
a fundamental role during transcription;

* 125 profiles of DNase I hypersensitive regions (DHS), indicating the presence or absence
of regulatory elements in DNA, which are also important during the transcription phase;

* 104 profiles of histone modifications, i.e., mutations in histones that make DNA in chro-
matin less accessible, thus preventing correct transcription;
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4.1. DEEPSEA

The model—implemented with the Torch7 library—consists of exactly three convolutional
layers: the first layer contains 320 filters, the second 480, and the last contains 960 kernels. The
filters are Position Weight Matrices (PWM), i.e., matrices composed of 4 rows and M columns
that, for each nucleotide base, indicate the probability of appearing in a specific position, as
shown in Figure 4.1.

The filters analyze the input sequence and, through convolution, extract significant patterns
by gradually shifting the window by one base in the sequence. In the first layer, the kernel has
dimensions M x 4, where M is the window length and 4 represents the number of nucleotide
bases. The subsequent convolutional layers have dimensions M x k, where k is the number
of kernels used in the previous convolutional layer. After each convolutional layer, a ReLU
(Figure 3.13) is applied, followed by a max-pooling layer that extracts the predominant feature
from the convolution result. In this case, the pooling window step does not equal one but
rather matches the window length itself. Finally, after the three convolutional layers, there is
a fully connected layer—which receives the max-pooling output of the third convolution and
applies a ReLU—and the output layer, which processes the information with a sigmoid function
(Figure 3.4) that calculates the probability that the input sequence corresponds to one of the 919
profiles.

The 919 chromatin profiles were obtained from the Encyclopedia of DNA Elements (ENCODE)
and Roadmap Epigenomics projects [82], [83]. The extracted sequences were divided into 200
bp bins', totaling 521,636,200 bp. Each bin was then labeled to one of the 919 chromatin
profiles if more than half of the sequence matched the theoretical profile. Each extracted bin
was centered on a 1000 bp human genome sequence to provide DeepSEA with more con-
text for deriving more meaningful information. Each input sequence was transformed into
a 1000 x 4 matrix through One-Hot encoding, which converts the one-dimensional sequence
into a two-dimensional matrix. More precisely, the nucleotide bases are encoded as follows:
A — [1,0,0,0], T — [0,1,0,0], C — [0,0,1,0], and G — [0,0,0,1]. Finally, each matrix is
associated with the respective label vector containing the network’s expected output.

To effectively train DeepSEA, the cost function was defined as the Negative Log Likelihood

1 2 3 4 5 6 7 8 9 10
09 01 04 025 06 07 02]05 0803

C 005 07 03025 010104 02 005 0.2

G 00301 02/025 020102 02005 04

T 002 01 01025 01]0.1]02 01 01 0.1

Figure 4.1: Representation of a PWM used as a filter within a CNN.

'With “bp”, “base pair” is meant, indicating the sequence length in the number of base pairs.
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CHAPTER 4. CONVOLUTIONAL NETWORKS AND NON-CODING VARIANTS

(NLL)—also known as Binary Cross Entropy (BCE)—defined as follows:

NLL = —ZZ log [ys, p 0p (Xs) + (1 = ys,p) (1 — 0y (Xy))]
s p
In this formula, s is the index of the s-th sample (X;) of the dataset, and p is the index of the
chromatin profile. Consequently, the value yj , represents the correct value of sample s with
respect to chromatin profile p, while 6, (X;) is DeepSEA’s prediction for sample X, concerning
profile p. The actual cost function is defined as the NLL function summed with other values
to prevent extitoverfitting”. The gradient of the loss function was computed using the back-
propagation algorithm and then used for network optimization. The optimization algorithm
employed was SGD with momentum, a variant used to further increase the chances of avoiding
local minima [74]. Additionally, extitdropout training was applied, which involves disabling

some neurons during training epochs to make the network more robust against overfitting [66].

BASSET

Basset? is a powerful tool developed in 2016, designed to analyze DNA sequences and pre-
dict the accessibility of 164 DNase I hypersensitive sites (DHS), which indicate the presence of
regulatory elements. Using CNNs, this model provides valuable insights into the transcription
phase from DNA to RNA by analyzing these specific chromatin sites. Like DeepSEA, multiple
convolutional layers facilitate the understanding of functional aspects resulting from mutations
in DHS.

Basset, like DeepSEA, was implemented using the Torch7 library. This tool allows cus-
tomization of the model, specifying the number of each type of layer, the number of filters
(PWM) in convolutional layers, their size, pooling window size, the number of neurons in fully
connected layers, and various hyperparameters for training and testing. Bayesian optimization
was used to determine the ideal layers and hyperparameters for the architecture. The structure
consists of three convolutional layers: the first contains 300 filters of length 19 bp, the second
consists of 200 kernels of length 11 bp, and the third layer has 200 kernels of length 7 bp. It is
important to note that after each convolutional layer, a batch normalization layer normalizes the
convolution output, followed by a ReLU and a max-pooling layer. Following the three convolu-
tional layers, there are three fully connected layers, alternating with two ReLLU layers and two
dropout layers (with a coefficient of 0.3) that, similar to DeepSEA, are used to prevent overfit-
ting by disabling random neurons during training. Finally, the output layer, using the sigmoid
function, calculates the probability that the input belongs to one of the 164 DHS.

2Qverfitting occurs when the model is completely aligned with the training dataset, thus becoming less accu-
rate in predicting data not present in the dataset.

3The name refers to the basset hound, known for its olfactory abilities, analogous to the model’s ability to
recognize patterns.
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4.3. DEEPSATA

Among the DNase I hypersensitive sites, 125 were extracted from ENCODE and 39 from
“Roadmap Epigenomics”. The extracted data were processed, and all sites were isolated and
enriched to form an initial dataset consisting of 600 bp sequences, totaling 2071886 bp. Each
sequence in the dataset was then associated with a label vector indicating which of the 164 types
the sequence belonged to. Among the 164 types, 17% of sites were associated with promoters,
47% were classified as intragenic sites—Ilocated within genes—and the remaining 36% were
labeled as intergenic sites—Ilocated between genes. Before being used in the network, the sites
were processed using One-Hot encoding, resulting in input sequences of size 600 x 4. From the
total dataset, 71 886 bases were used for testing and another 70000 for validation.

The model was trained using stochastic GD, aiming to optimize the BCE function whose
gradient was computed via backpropagation. To prevent overfitting, the early stopping tech-
nique was applied, terminating training after 12 epochs when the validation loss remained un-

changed.

DEEPSATA

Published in 2023, DeepSATA is the third CNN-based tool designed to identify OCR—open
chromatin regions—while also attempting to understand their function. DeepSATA focuses on
non-coding mutations in TF binding sites, not only in human genomic sequences but also in
other animal species such as pigs, chickens, cattle, and mice.

DeepSATA is a model based on DeepSEA. It consists of three convolutional layers, with
320, 480, and 960 kernels, respectively (also represented as PWM). Each convolutional layer is
followed by a ReLLU function, and then a max pooling layer extracts the most relevant features.
After each convolutional layer, a dropout layer is also present, helping prevent overfitting, as in
Basset. The first two dropout layers have a coefficient of 0.2, while the third has a coefficient
of 0.5. Similar to Basset, the three convolutional layers are followed by a fully connected layer
that prepares the data for the output layer, which, using the sigmoid function, calculates the
probability that the given input belongs to one of the available OCR.

Unlike DeepSEA and Basset, the input sequence format is three-dimensional instead of
two-dimensional. Specifically, the input sequence has dimensions M x 4 x (N + 1), where M
is the input sequence length, 4 represents the nucleotide bases, and N + 1—the depth of the
three-dimensional matrix—indicates the specific affinities of the input sequence with the N
transcription factors. An additional 1 is included to represent the One-Hot encoding layer of the
sequence. This way, the TF associated with the input sequence help better understand mutation
effects. The TF were obtained from the JASPAR database [84], and the most common motifs
were identified using FIMO* [85]. The top N most frequent transcription factors were selected
to be included in the initial dataset. Due to resource constraints, the authors chose N = 10 TF

binding sites.

“4This software identifies known motifs within a given input sequence.

34



CHAPTER 4. CONVOLUTIONAL NETWORKS AND NON-CODING VARIANTS

The dataset containing sequences from multiple species was collected from the following

databases:
* Mouse sequences were obtained from the NCBI Sequence Read Archive (SRA) [86];
* Human genome fragments were retrieved from ENCODE,;

* Pig genomic sequences were obtained from the Gene Expression Omnibus (GEO) [87];

Cattle and chicken DNA portions were downloaded from the University of California
(UC Davis) Farm Clusters section [88].
After collecting all the necessary data, in a manner entirely analogous to DeepSEA, they were
divided into bins of 200 bp and labeled according to the OCR they represented: if more than
half of the sequence matched an OCR, the label was set to 1 for that particular chromatin
region; otherwise, it was set to 0. Secondly, they were centered with sequences of 400 bp to
obtain sequences of 1000 bp as input, also called Open Chromatin Bin (OCB). Consequently,
each input bin, once the One-Hot encoding was performed, is represented by a matrix of size
1000 x 4 x 11.

Since DeepSATA is a model based on DeepSEA, it was trained using stochastic GD with
momentum to optimize the binary cross-entropy function. In an entirely analogous manner, the

gradient of this function was calculated using the backpropagation algorithm.
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Discussion

After having thoroughly described the characteristics of the three bioinformatics tools in
Chapter 4, this chapter compares the three tools, highlighting their common properties and the
aspects in which they differ, to provide an objective comparison that allows for a deeper under-
standing of their predictive performance.

DeepSEA, Basset, and DeepSATA share some common features. All three tools use the
same sequence encoding method, One-Hot encoding, which transforms a sequence of length M
into an M x 4 matrix, mapping the nucleotide bases of the sequence into vectors. This way, the
sequence can be properly processed by the kernels, which are PWM that assign each base in
the sequence a weight (or occurrence probability) at a specific position (Figure 4.1). Finally, the
three models were trained using stochastic SGD, aiming to optimize the same objective function

(cost function): the binary cross-entropy (BCE).

Despite these similarities, the three tools present several differences, particularly in the net-
work structure and the chosen training dataset. Table 5.1 summarizes the main characteris-
tics.DeepSEA consists of three convolutional layers, each followed by a ReLU layer and a
max-pooling layer, used to extract the dominant features processed by the convolution. The
three convolutional layers contain 320, 480, and 960 filters, respectively. Subsequently, there is
a fully connected layer that prepares the information to be evaluated in the output layer, which
consists of a sigmoid function.

Similarly, Basset also consists of three convolutional layers, but in addition to the ReLU
layer and the max-pooling layer, it includes a normalization layer. It also has three fully con-
nected layers, alternating with additional ReLLU layers and dropout layers to prevent overfitting.
As in the previous case, the output is computed using a sigmoid function.

Like DeepSEA and Basset, DeepSATA also consists of three convolutional layers with 320,
480, and 960 kernels, respectively. Each convolutional layer is followed by a ReLU layer, a
max-pooling layer, and a dropout layer to mitigate overfitting. After the convolutional layers,
a fully connected layer processes the information for the output layer, which applies a sigmoid

function. Additionally, this model, unlike the other two, processes three-dimensional input
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Table 5.1: Summary of differences among the three tools.

Model Structure Kernel Input Dataset
Three convolutional layers
— each followed by a 320 ENCODE,
DeepSEA ReLU layer and a ’ 1000 x 4 Roadmap
. 480, 960 . ;
max-pooling layer — and Epigenomics
a fully connected layer
Three convolutional layers
— each followed by a
normalization layer, a
ReLU layer, and a 300 ENCODE,
Basset max-pooling layer — and ’ 600 x 4 Roadmap
200, 200 . .
three fully connected Epigenomics
layers — alternating with
a ReLU layer and a
dropout layer
Three convolutional layers
B elizllif?llle(l) V:daby ) 320 1000 x ENCODE, NCBI
DeepSATA - Ve, ’ SRA, GEO, UC
max-pooling layer, and a | 480,960 | 4 x 11 .
Davis
dropout layer — and a
fully connected layer

data, designed to provide more context for better understanding potential mutation effects on
the sequence.

The authors of the article introducing DeepSATA, after illustrating the model and its main dif-
ferences from its predecessor DeepSEA, conducted an experiment comparing the predictive ca-
pabilities of DeepSEA, Basset, and DeepS ATA..Specifically, after training the three models on a
dataset containing sequences from various animal species, including humans, they evaluated the
models’ performance. From the test results (Table 5.2), it is evident that DeepSATA’s predic-
tive performance, although not by much, surpasses that of DeepSEA and Basset. In particular, a
more significant difference is observed in pig genetic sequences, where the AUC/AUROC value
is more than five percentage points higher. In other species, even if not by much, DeepSATA
still achieves better results.

From Table 5.2, it can be seen that the AUROC values of DeepSATA and DeepSEA differ
by only a few thousandths, unlike Basset’s values, which are sometimes significantly lower than
those of the other two models. Specifically, for human genome sequences, there is a difference
of about four percentage points between Basset and DeepSEA/DeepSATA.

Consequently, the table not only indicates that DeepSATA has better predictive capabilities
than the other two tools but also suggests that the DeepSEA model is better at distinguishing

categories than Basset. The information in Table 5.2 is also represented in the form of ROC
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Table 5.2: AUC results comparing DeepSEA, Basset, and DeepSATA.

Model Mice Pigs Cattle Humans Chickens
DeepSATA 0.854 0.779 0.772 0.759 0.744
DeepSEA 0.796 0.775 0.769 0.755 0.736

Basset 0.778 0.719 0.768 0.717 0.722

curves in Figure 5.1, which shows the predictive performance of each model depending on the
animal species examined. For each animal species and each of the three tools, performance
graphs have been plotted. Specifically, each graph contains multiple ROC curves, each indi-
cating the predictive capability concerning a specific OCR. The AUC value was calculated for
each curve, and then the average was determined for each species, obtaining the values shown
in Table 5.2.

Finally, the articles highlight some computational characteristics of the tools. Specifically,
DeepSEA was trained using an GPU NVIDIA Tesla K20m, but the training time is not specified.
However, an unofficial implementation of the tool is available in a GitHub repository, using the
Python library TensorFlow. The repository description states that fully training the tool from
scratch with a GTX 1070 took approximately 10 days[89]. The Basset article, on the other
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Figure 5.1: Comparison of the predictive performance of the three tools across different animal
species through ROC curves, shown for each OCR, and the mean AUROC values [18].
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hand, provides a more explicit description of its characteristics. Specifically, training the tool
on the same GPU used for DeepSEA takes 18 minutes, while training on a MacBook 2.8-GHz
Intel Core i7 takes about six and a half hours. DeepSATA, however, does not provide any
information about the machine model used for training or the time required, except that the
input size had to be limited due to resource constraints.

In conclusion, given the lack of complete information from the three tools, a future exper-
imental comparison could be conducted to obtain an impartial benchmark that provides more
detailed information regarding the structure, computational requirements, and predictive per-

formance of the tools.
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Conclusions

The three bioinformatic tools discussed have made a significant contribution to understand-
ing the effects of non-coding variants in the human genome. To improve predictive performance
and make these tools even more precise, it is recommended to train the models with larger
datasets, so as to better explore the functional consequences of non-coding mutations. Future
research will focus on predicting the interactions between enhancers and promoters and their
contribution to gene expression, offering new perspectives on the effects of non-coding variants.

The design of tools like these, aimed at studying non-coding variants, remains of funda-
mental importance. Despite the progress made thanks to these tools, the field of non-coding
mutations is still underexplored by the scientific community and, therefore, requires constant
and ongoing deepening and improvement. Diseases related to these mutations are widespread
and still poorly understood. It is essential to continue research in this field, in the hope of

making new discoveries that can enrich our understanding and lead to innovative solutions.
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